Algebraic Helmholtz inversion in planar magnetic resonance elastography.
نویسندگان
چکیده
Magnetic resonance elastography (MRE) is an increasingly used noninvasive modality for diagnosing diseases using the response of soft tissue to harmonic shear waves. We present a study on the algebraic Helmholtz inversion (AHI) applied to planar MRE, demonstrating that the deduced phase speed of shear waves depends strongly on the relative orientations of actuator polarization, motion encoding direction and image plane as well as on the actuator plate size, signal-to-noise ratio and discretization of the wave image. Results from the numerical calculation of harmonic elastic waves due to different excitation directions and simulated plate sizes are compared to experiments on a gel phantom. The results suggest that correct phase speed can be obtained despite these largely uncontrollable influences, if AHI is based on out-of-plane displacements and the actuator is driven at an optimal frequency yielding an optimal pixel per wavelength resolution in the wave image. Assuming plane waves, the required number of pixels per wavelength depends only on the degree of noise.
منابع مشابه
Comparison of brain viscoelasticity and brain volumetry in healthy volunteers
Introduction: Mechanical properties of human soft tissues can be investigated in vivo with dynamic magnetic resonance elastography (MRE) by applying low frequency shear waves and measuring the resulting tissue deflections [1]. From these data, elastic and viscoelastic modules are commonly calculated using the algebraic Helmholtz inversion [2,3]. So far, MRE is the only method for a noninvasive ...
متن کاملIn vivo magnetic resonance elastography of human brain at 7 T and 1.5 T.
PURPOSE To investigate the feasibility of quantitative in vivo ultrahigh field magnetic resonance elastography (MRE) of the human brain in a broad range of low-frequency mechanical vibrations. MATERIALS AND METHODS Mechanical vibrations were coupled into the brain of a healthy volunteer using a coil-driven actuator that either oscillated harmonically at single frequencies between 25 and 62.5 ...
متن کاملComplex-valued stiffness reconstruction for magnetic resonance elastography by algebraic inversion of the differential equation.
Noninvasive quantitation of the mechanical properties of tissue could improve early detection of pathology. Previously a method for detecting displacement from propagating shear waves using a phase-contrast MRI technique was developed. In this work it is demonstrated how a collection of data representing the full vector displacement field could be used to potentially estimate the full complex s...
متن کاملIn vivo waveguide elastography of white matter tracts in the human brain.
White matter is composed primarily of myelinated axons which form fibrous, organized structures and can act as waveguides for the anisotropic propagation of sound. The evaluation of their elastic properties requires both knowledge of the orientation of these waveguides in space, as well as knowledge of the waves propagating along and through them. Here, we present waveguide elastography for the...
متن کاملMultifrequency inversion in magnetic resonance elastography.
Time-harmonic shear wave elastography is capable of measuring viscoelastic parameters in living tissue. However, finite tissue boundaries and waveguide effects give rise to wave interferences which are not accounted for by standard elasticity reconstruction methods. Furthermore, the viscoelasticity of tissue causes dispersion of the complex shear modulus, rendering the recovered moduli frequenc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physics in medicine and biology
دوره 53 12 شماره
صفحات -
تاریخ انتشار 2008